Клеточное строение тела прокариот или. Строение прокариотической клетки. Что такое нуклеоид

Прокариотические клетки по своему строению мельче и проще клеток эукариот . Среди них не бывает многоклеточных организмов, лишь иногда образуют подобие колоний. У прокариот нет ни только клеточного ядра, но и всех мембранных органелл (митохондрий, хлоропластов, ЭПС, комплекса Гольджи, центриолей и др.).

К прокариотам относятся бактерии, синезеленые водоросли (цианобактерии), археи и др. Прокариоты были первыми живыми организмами на Земле.

Функции мембранных структур выполняют выросты (впячивания) клеточной мембраны во внутрь цитоплазмы. Они бывают трубчатыми, пластинчатыми, иной формы. Ряд из них называют мезосомами. Фотосинтезирующие пигменты, дыхательные и другие ферменты располагаются на таких различных образованиях и таким образом выполняют свои функции.

У прокариот в центральной части клетки находится только одна большая хромосома (нуклеоид ), которая имеет кольцевое строение. В ее состав входит ДНК. Вместо белков, придающих форму хромосоме как у эукариот, здесь находится РНК. Хромосома не отделена от цитоплазмы мембранной оболочкой, поэтому говорят, что прокариоты - безъядерные организмы. Однако в одном месте хромосома прикреплена к клеточной мембране.

Кроме нуклеоида в строении прокариотических клеток отмечается наличие плазмид (малых хромосом также кольцевой структуры).

В отличие от эукариот цитоплазма прокариот неподвижна.

У прокариот есть рибосомы, однако они мельче рибосом эукариот.

Прокариотические клетки отличаются сложным строением своих оболочек. Кроме цитоплазматической мембраны (плазмалеммы), у них есть клеточная стенка, а также капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид).

На поверхности прокариот часто имеются жгутики (один или множество) и различные ворсинки. С помощью жгутиков клетки перемещаются в жидкой среде. Ворсинки выполняют разные функции (обеспечивают несмачиваемость, прикрепление, переносят вещества, участвуют в половом процессе, образуя конъюгационный мостик).

Прокариотические клетки делятся бинарным делением. У них нет митоза и мейоза. Перед делением нуклеоид удваивается.

Прокариоты часто образуют споры, которые являются способом переживания неблагоприятных условий. Споры ряда бактерий сохраняют жизнеспособность при высокой и крайне низкой температурах. При образовании споры прокариотическая клетка покрывается толстой плотной оболочкой. Ее внутреннее строение несколько изменяется.

Для всех микроорганизмов, входящих в царство, ха­рактерен прокариотический тип организации клетки, что опре­деляется особенностями их ультраструктуры, а также строения и функций ряда макромолекул. Из всех известных клеток прокариотическая самая простая и, вероятно, первая клетка, возникшая около 3,6 млрд. лет назад.

В настоящее время предполагают, что в какой-то момент вре­мени эволюция клеток пошла по двум самостоятельным направле­ниям. Появились две группы организмов -прокариоты, у которых ядерный материал не был ограничен оболочкой, и эукариоты, име­ющие оформленное ядро с ядерной оболочкой.

Основные отличия прокариотов от эукариотов состоят в сле­дующем:

в клетках прокариотов отсутствуют компартменты, или органеллы, ограниченные от цитоплазмы специализированными внут­риклеточными липопротеидными мембранами: эндоплазматическая сеть (ретикулюм), митохондрии, аппарат Гольджи, лизосомы, хлоропласты;

ядерная структура прокариотов, называемая нуклеоидом, не имеет ядерной оболочки с поровым комплексом и представлена макромолекулой ДНК с белками (без гистонов);


геном прокариотической клетки организован в одну коль­цевую хромосому, которая представляет собой единый репликон и не делится митозом;

дополнительные репликоны могут быть представлены коль­цевыми молекулами плазмидных ДНК;

прокариотическая клетка содержит только один тип рибосом с константой седиментации 708, причем часть рибосом ассоции­рована с цитоплазматической мембраной, что никогда не наблю­дается у эукариотов;

клеточная стенка прокариотов содержит характерный только для бактерий биогетерополимер - пептидогликан.

Некоторые прокариоты обладают структурами, отсутствующи­ми у эукариотов:

подвижные бактерии имеют особые бактериальные жгутики из белков-флагеллинов;

спорообразующие формы бактерий в неблагоприятных усло­виях превращаются в уникальные по степени устойчивости типы покоящихся клеток - бактериальные споры;

клетки прокариотов очень малы; диаметр большинства кле­ток бактерий не превышает 1 мкм, однако длина может быть зна­чительной, например, у некоторых спирохет - до 500 мкм. Ма­лые размеры прокариотов связаны, как полагают, с отсутствием в их ультраструктуре специализированных мембранных систем, что затрудняет координацию внутриклеточных процессов пропор­ционально увеличению размеров клетки.

Клеточное строение четко отделяет прокариотов от вирусов. Подчеркивая примитивность организации бактериальных клеток, необходимо однако отметить, что они эволюционировали в своем направлении в течение гораздо большего времени, чем эукарио-тические, и, хотя эволюционные возможности прокариотической клетки, по всей видимости, ограничены, в процессе эволюции происходили изменения их клеточной организации, что привело постепенно к ее усложнению.


По целому ряду признаков бактерии имеют принципиаль­ные различия с эукариотами, и знание особенностей их устрой­ства и функционирования позволяет понять возможность из­бирательного антимикробного действия химиотерапевтических препаратов. Применение электронной микроскопии и тонких цитохимических исследований позволило изучить их ультраструкту­ру (рис. 1). Обязательными компонентами бактериальной клетки являются цитоплазматическая мембрана, окружающая цитоплаз­му, в которой содержатся рибосомы и нуклеоид. Клетки всех бак­терий, за исключением L-форм и микоплазм, имеют клеточную стенку. Другие структуры являются дополнительными и опреде­ляют морфологические и функциональные особенности различ­ных видов: капсулы, жгутики, пили, споры, включения.


Рис. 1. Схема строения прокариотической клетки:

/ - капсула; 2 - клеточная стенка; 3 - цитоплазматическая мем­брана; 4 - мезосомы; 5 - цитоплазма; 6 - нуклеоид; 7 - плазмида;

8 - рибосомы и полисомы; 9 - жгутики; 10 - пили; 11 - гранулы гликогена; 12 - липидные капельки; 13 - гранулы волютина; 14 - включения серы

Поверхностные структуры. Капсула - это наружный, самый верхний слизистый слой клетки различной толщины фибриллярной или глобулярной структуры. Она имеет полисахаридную, му-кополисахаридную или полипептидную природу и содержит до 98 % воды. В зависимости от толщины различают микрокапсулу (толщиной менее 0,2 мкм) и макрокапсулу. Капсула не является обязательным структурным элементом клетки. Биологический смысл капсулообразования определяется целым рядом функций, среди которых: защита от фагоцитов и вирусов, токсинов и ради­ации; иммунологическая мимикрия у патогенных бактерий; со­хранение влаги в условиях пониженной влажности; прикрепле­ние клетки к плотной поверхности.

Пили (фимбрии, ворсинки, реснички) - это прямые цилиндри­ческие образования белковой природы длиной 0,3-10 мкм, диа­метром до 10 нм, равномерно покрывающие поверхность клетки (до нескольких сотен на клетку), не выполняющие локомоторную функцию.

Различают пили общего типа, способствующие прикреплению бактериальной клетки к субстрату, клеткам человека (явление адгезии микроорганизмов) и пили половые, участвующие в переда­че генетического материала от клетки-донора к клетке-реципиен­ту в процессе конъюгации, а также обуславливающие адсорбцию специфических бактериофагов на клетках.

Жгутики - органы движения бактерий в виде спирально изо­гнутых цилиндрических образований белковой природы (белки-флагеллины) на поверхности клетки длиной 3-12 мкм и толщи­ной 10-30 нм, прикрепленные базальным телом (системой дисков) к цитоплазматической мембране (см. вкл. I). Число и располо-


жение жгутиков может быть различным и является видовым при­знаком (рис. 2). Различают монотрихи (бактерии с одним жгути­ком на конце), амфитрихи (бактерии с жгутиками, расположен­ными по полюсам), лофотрихи (клетки с пучком жгутиков на одном конце) и перитрихи (с 2-30 жгутиками по всему телу клетки).

Пили и жгутики не являются обязательными органоидами бактериальной клетки.

Клеточная стенка - один из основных структурных элемен­тов бактерии, выполняющий механическую защиту клетки. Кроме микоплазм и L-форм, клетки всех бактерий покрыты клеточной стенкой, толщина которой у разных видов колеблется в пределах 0,01-14 мкм. Она представляет собой плотную эластичную структу -

Рис. 2. Основные формы бактерий (по А. А. Воробьеву и соавт., 1994):

/ - стафилококки; 2 - стрептококки; 3 - сарцины; 4 - гонококки;

5- пневмококки; 6- капсулы пневмококков; 7- коринебактерии дифтерии; 8 - клостридии; 9 - бациллы; 10 - вибрионы; 11 - спириллы; 12 - трепонсмы; - боррелии; 14 - лептоспиры; 15- актиномицеты; 16 - расположение жгутиков: а - монотрихи; б - лофотрихи; в - амфитрихи; г - перитрихи


ру, которая окружает протопласт клетки и придает ей постоянную форму и жесткость. Клеточная стенка препятствует осмотическому набуханию и разрыву клеток, когда они попадают в гипотоничес­кую среду. Вода, другие малые молекулы и разные ионы легко про­никают через крошечные поры в клеточной стенке, но через них не проходят крупные молекулы белков и нуклеиновых кислот.

Основным химическим компонентом клеточной стенки является специфический гетерополимер - пептидогликан (муреин, мукопептид, глюкозаминопептид, гликопептид), состоящий из цепочек, в которых чередуются остатки N-ацетилглюкозамина и М-ацетилмурамовой кислоты, соединенные между собой β-1,4-гликозидными связями. Это резко отличает оболочечные структуры бактерий от эукариотических и создает «ахиллесову пяту» бактерий, используемую для антимикробной химиотерапии.

Организация цитоплазмы. Цитоплазматическая мембрана (ЦМ) Носится к числу обязательных клеточных структур, имеет толщину 7-13 нм и располагается непосредственно под клеточной стенкой, ограничивая протопласт клетки. По своему строению мембраны бактериальных, животных и растительных клеток очень сходны. В настоящее время большинством ученых принята жидкостно-мозаичная модель строения ЦМ. Согласно этой модели ЦМ состоит из двойного слоя (15-30 % молекул фосфолипидов и триглицеридов с направленными внутрь гидрофобными концами и гидрофильными «головками» наружу. В него мозаично погружены молекулы белка (50-70%). В мембране имеются также углеводы (2-5 %) и РНК. ЦМ представляет собой пластическое «текучее» образование, которое играет важнейшую роль обмене веществ, является полупроницаемой структурой, поддерживает осмотическое давление, контролирует как поступление веществ в клетку, так и выведение конечных метаболитов по системе субстрат специфичных пермеаз (ферментов-переносчиков, локализованных на мембране). С ЦМ связаны процессы дыхания, доставляющие клетке энергию, то есть те функции, за которые в эукариотической клетке ответственны мембраны митохондрий и хлоропластов.

Выделяют так называемые мезосомы - впячивания ЦМ - смешанные мембранные системы, образованные трубочками, пу­зырьками и ламеллами. Предполагается выполнение ими функ­ций центра дыхательной активности бактерий, участие в делении клетки и расхождении дочерних хромосом после репликации.

Цитоплазма заполняет собой объем бактерии, ограниченный ЦМ. Это сложная коллоидная система, которая состоит из бел­ьков, нуклеиновых кислот, углеводов, липидов, минеральных ве­ществ и 70-80 % воды. Цитоплазма является местонахождением внутриклеточных органелл (нуклеоида, рибосом, различных вклю­чений) и участвует во внутриклеточном метаболизме. Характер-


ными чертами организации цитоплазмы прокариотов по сравне­нию с животными и растительными клетками являются отсутст­вие эндоплазматического ретикулюма и высокая электронная плот­ность.

Нуклеоид - ядерный материал бактериальной клетки. Он пред­ставлен двойной нитью макромолекулы ДНК с молекулярной массой 2-3 10 в соединении с белками, среди которых отсутствуют характерные для эукариотов ядерные (гистоны и гистоноподобные) белки. В отличие от настоящего ядра эукариотических кле­ток нуклеоид не имеет ядерной перфорированной мембраны, не делится митозом и представляет собой в период деления одну кольцевую хромосому, кодирующую всю генетическую инфор­мацию.

Плазмиды - необязательные внутриклеточные структуры в виде внехромосомных кольцевых участков ДНК, способных к само­репликации. Обуславливают наследование дополнительных при­знаков: лекарственной устойчивости, токсигенности, бактериоциногенности и др.

Рибосомы - органеллы, в которых осуществляется синтез белка. Каждая рибосома имеет размеры 20х30х30 нм и константу седи­ментации 70S (так как при ультрацентрифугировании рибосомы оседают со скоростью около 70 единиц Сведенберга (S), в отличие от более крупных цитоплазматических рибосом эукариотов с константой седиментации 808). В свободном состоянии бактери­альная рибосома находится в виде двух субъединиц - 30S и 50S, обе субъединицы содержат примерно по 40 % рибосомальной РНК и 60 % белка. Во время синтеза белка рибосомы с помощью информационной РНК образуют полисомы, обычно связанные с ЦМ. Бактерии могут содержать от 5000 до 50 000 рибосом, что зависит от возраста клетки и условий культивирования.

Знание различий между рибосомами бактерий и эукариоти­ческих клеток имеет важное значение для понимания механизмов антимикробного действия тех антибиотиков, которые подавляют синтез белка на бактериальных рибосомах и не затрагивают фун­кции 80S рибосом.

Споры (эндоспоры) бактерий - покоящиеся формы некоторых видов грамположительных бактерий в неблагоприятных условиях внешней среды.

Спорообразование происходит в несколько стадий, при пол­ном созревании споры вегетативная часть клетки лизируется и от­мирает (см. вкл. I, II).

В процессе спорообразования (споруляции) можно выделить несколько основных этапов. Переходящая к спорообразованию клетка перестает расти; как правило, она содержит два и более нуклеоидов. На первом этапе часть клеточной ДНК локализуется в одном из полюсов клетки. Затем часть цитоплазмы с заключен-


Иной в ней хромосомой обособляется цитоплазматической мембраной, как бы врастающей в глубь клетки, при этом образуется проспорь, окруженная двойной мембранной оболочкой.

Затем между двумя мембранами идет формирование многослойной стенки и коры (кортекса) споры пептидогликановой при­роды. Снаружи мембран образуется также полипептидная оболочка и экзоспорий, окружающий спору в виде свободного чехла. Полностью сформировавшаяся бактериальная спора - это уплотненный участок клетки с нуклеоидом и рибосомами, ограничен­ный плотной многослойной оболочкой, пропитанной кальциевы­ми Солями дипиколиновой кислоты.

Спорообразование характерно для палочковидных бактерий - бацилл и клостридий (см. рис. 2). Различают центральное, терминальное и субтерминальное расположение спор в вегетативной части клетки, что является дифференциально-диагностическим признаком возбудителя.

В одной бактерии образуется одна спора, находящаяся в стадии покоя, при этом все процессы обмена веществ практически сведены к нулю, но сохраняется потенциальная жизнеспособность клетки. Поскольку увеличение числа микроорганизмов в этом процессе не происходит, спорообразование у бактерий не является способом размножения, а лишь приспособлением для выживания. Уникальные по степени своей устойчивости к физическим и химическим факторам бактериальные споры могут сохраняться до внешней среде без потери жизнеспособности длительное время (десятки лет), затрудняя борьбу со спороносными патогенными бактериями.

Внутриплазматические включения. Термином «включения» обозначают такие внутриклеточные структуры бактерий, кото­рые, очевидно, не являются абсолютно необходимыми для их жизнедеятельности. Однако их природа и функции могут быть различны. В одних случаях включения являются продуктами об­мена бактериальной клетки, в других - запасом питательных веществ.

Из резервных полисахаридов особенно распространены глюканы - гликоген, крахмал, гранулеза. Они выявляются в клетках бацилл, клостридий, энтеробактерий и др.

Запасные липиды представлены полиэфиром β-оксимасляной кислоты и восками. Воски, эфиры высокомолекулярных жирных кислот и спиртов характерны для микобактерий.

У коринебактерий резерв фосфора создается в виде зерен по­лифосфатов (волютина), имеющих диагностическое значение.

Все живые организмы могут быть распределены в одну из двух групп (прокариоты или эукариоты) в зависимости от основной структуры их клеток. Прокариоты - живые организмы, состоящие из клеток, которые не имеют клеточного ядра и мембранных органелл. Эукариоты - живые организмы, которых содержат ядро, а также мембранные органеллы.

Клетка является фундаментальной составляющей нашего современного определения жизни и живых существ. Клетки рассматриваются в качестве основных строительных блоков жизни и используются в определении того, что значит быть «живым».

Давайте взглянем на одно определение жизни: «Живые существа - это химические организации, состоящие из клеток и способные размножаться» (Китон, 1986). Это определение базируется на двух теориях - клеточной теории и теории биогенеза. впервые была предложена в конце 1830-х годов немецкими учеными Маттиасом Якобом Шлейденом и Теодором Шванном. Они утверждали, что все живые существа состоят из клеток. Теория биогенеза, предложенная Рудольфом Вирховым в 1858 году, утверждает, что все живые клетки возникают из существующих (живых) клеток и не могут появиться спонтанно из неживой материи.

Компоненты клеток заключены в мембрану, которая служит барьером между внешним миром и внутренними составляющими клетки. Клеточная мембрана - избирательный барьер, это означает, что он пропускает некоторые химические вещества, поддерживающие равновесие, необходимое для жизнедеятельности клеток.

Клеточная мембрана регулирует перемещение химических веществ из клетки в клетку следующими способами:

  • диффузия (тенденция молекул вещества к минимизации концентрации, то есть перемещение молекул из области с более высокой концентрацией по направлению к области с более низкой до момента выравнивания концентрации);
  • осмос (движение молекул растворителя через частично проницаемую мембрану для того, чтобы уравнять концентрацию растворенного вещества, которое не в состоянии двигаться через мембрану);
  • селективный транспорт (при помощи мембранных каналов и насосов).

Прокариоты - организмы, состоящие из клеток, которые не имеют клеточного ядра или любых мембранных органелл. Это означает, что генетический материал ДНК у прокариот не связан в ядре. Кроме того, ДНК прокариот менее структурирована, чем у эукариот. В прокариотах ДНК одноконтурная. ДНК эукариот организована в хромосомы. Большинство прокариот состоят только из одной клетки (одноклеточные), но есть несколько и многоклеточных. Ученые разделяют прокариот на две группы: и .

Типичная клетка прокариота включает:

  • плазматическую (клеточную) мембрану;
  • цитоплазму;
  • рибосомы;
  • жгутики и пили;
  • нуклеоид;
  • плазмиды;

Эукариоты

Эукариоты - живые организмы, клетки которых содержат ядро и мембранные органеллы. Генетический материал у эукариот находится в ядре, а ДНК организована в хромосомы. Эукариотические организмы могут быть одноклеточными и многоклеточными. являются эукариотами. Также эукариоты включают растения, грибы и простейших.

Типичная клетка эукариота включает:

  • ядрышко;

Прокариоты или доядерные клетки - первые живые организмы на Земле. Несмотря на примитивное строение прокариотической клетки, бактерии, археи и цианобактерии смогли дожить до наших дней.

Компоненты

Прокариоты состоят из трёх компонентов:

  • оболочки;
  • цитоплазмы;
  • генетического материала.

Оболочку прокариот образуют три слоя:

  • плазмалемма - тонкая мембрана, покрывающая цитоплазму;
  • клеточная стенка - жёсткая наружная оболочка, содержащая белок муреин;
  • капсула - защитная структура, состоящая из полисахаридов или белков.

Капсула (слизистый слой, чехол) - необязательный компонент клетки. Образуется для защиты от неблагоприятных условий, например, высыхания или заморозков. Это дополнительный барьер, способный защитить клетку от вирусов (бактериофагов).

У некоторых бактерий капсула служит дополнительным источником запаса веществ.

Рис. 1. Оболочка прокариот.

Цитоплазма прокариот - гелеобразное вещество, содержащее:

ТОП-2 статьи которые читают вместе с этой

  • неорганические вещества;
  • белки;
  • полисахариды;
  • метаболиты (продукты метаболизма).

Главной особенностью строения прокариотической клетки является отсутствие ядра. Генетическая информация в виде кольцевой ДНК хранится непосредственно в цитоплазме и образует нехарактерную для эукариотов структуру - нуклеоид.
Помимо нуклеоида в цитоплазме прокариот постоянно находятся:

  • рибосомы - структуры, состоящие из двух субъединиц, которые осуществляют биосинтез белка;
  • мезосома - складка плазмалеммы, осуществляющая репликацию ДНК и клеточное дыхание (аналог митохондрии);
  • органеллы движения - длинные жгутики, состоящие из белка флагеллина, и короткие пили, образованные белком пилином.

В цитоплазме помимо органелл могут находиться запасы веществ - включения:

  • гликоген;
  • крахмал;
  • волютин (метахроматин) - гранулы полифосфорной кислоты;
  • жировые капли;
  • сера.

Плазмиды - непостоянные структуры прокариот. Состоят из небольших отдельных молекул ДНК, которыми бактерии могут обмениваться в ходе горизонтального переноса генов.

Рис. 2. Органоиды доядерной клетки.

Деление

Прокариоты размножаются прямым или бинарным делением - амитозом. К этому процессу клетка никак не подготавливается. Деление начинается с удвоения кольцевой ДНК на мезосоме без образования хромосом.
Процесс условно можно разделить на две стадии:

  • кариокинез - репликация и расхождение ДНК;
  • цитокинез - разделение путём перетяжки всего содержимого клетки.

Каждой дочерней клетке достаётся по одному кольцу ДНК. Однако остальные структуры распределяются неравномерно.

Рис. 3. Деление бактерии.

ДНК бактерий, составляющая нуклеоид, может включать несколько миллионов нуклеотидов. Однако бактерии быстро приспосабливаются к неблагоприятным условиям благодаря постоянному обмену генами, находящимися в коротких ДНК плазмид.

Что мы узнали?

Из урока 10 класса узнали о строении и функциональном назначении органелл прокариотической клетки. К прокариотам относятся бактерии, цианобактерии и археи. Они не имеют ядра, генетическая информация располагается непосредственно в цитоплазме в виде спутанной структуры - нуклеоида. Помимо одной кольцевой ДНК в клетках могут находиться небольшие молекулы ДНК в виде плазмид. Прокариоты размножаются посредством амитоза и способны обмениваться генами.

Тест по теме

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 342.

По уровню организации клетки делят на прокариотические и эукариотические.

К прокариотам (от лат. pro – перед, вместо и греч. карион – ядро) относят организмы царства Дробянки: бактерии и сине-зеленые водоросли. Клетки прокариот имеют маленькие размеры и не превышают 30 мкм. Некоторые виды имеют клетки диаметром около 0,2 мкм.

Клетки прокариот не имеют ядра и клеточных органелл (кроме рибосом). Лишь у некоторых бактерий, которые живут в водоемах или капиллярах почвы, заполненных влагой, встречаются специфические газовые вакуоли. Благодаря изменениям объема газов в вакуолях бактерии могут двигаться в водной среде с минимальными затратами энергии.

Бактерии преимущественно одноклеточные организмы. Имеют клеточную стенку, в состав которой входит муреин . Муреин представляет собой единую молекулу. В состав клеточных стенок бактерий также входят белки, липополисахариды, фосфолипиды и т. п. Иногда извне клеточная стенка покрыта слизистой капсулой, которая состоит из полисахаридов. Она не очень крепко связана с клеткой и может легко разрушаться под действием определенных соединений. К клеточной стенке плотно прилегает плазматическая мембрана. Клеточная стенка бактерий имеет антигенные свойства, согласно которым лейкоциты синтезируют к ним антитела.

Клетки бактерий способны прилипать к разным субстратам и слипаться между собой благодаря липополисахаридам клеточной стенки.

В цитоплазме прокариот содержатся рибосомы, разнообразные включения, один или два ядерных участка – нуклеоиды – с наследственным материалом в виде кольцевой молекулы ДНК. Этот участок прикреплен к внутренней поверхности плазматической мембраны в определенном месте. ДНК не образует комплекса с белками.

Рибосомы прокариот по строению подобны рибосомам эукариотических клеток.

Плазматическая мембрана образует внутри клетки складки разной формы. На внутренних мембранах осуществляются основные процессы жизнедеятельности бактерий: дыхание, хемосинтез, фотосинтез. В клетках некоторых цианобактерий есть шарообразные мембранные структуры, в которых находятся фотосинтезирующие пигменты.

Могут иметь жгутик (один или несколько). Жгутики могут быть значительно длиннее самой клетки. Строение их более простое, чем строение жгутиков эукариот. Включают в свой состав белок флагеллин .

Бактерии преимущественно неподвижны – прикрепляются к поверхности субстрата или способствуют прикреплению клеток (во время полового процесса) с помощью специальных нитевидных наростов или трубчатых образований из белков или полисахаридов – пилей или фимбрий .

Скопления бактерий могут быть окружены общей слизистой капсулой. Скопления клеток могут иметь вид грозди, цепочки и т. п.